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Abstract

The aim of this thesis is to analyze the thermal radiation and heat effects on two-

dimensional unsteady squeezed flow of a tangent hyperbolic fluid flow towards a

sensor surface. The governing nonlinear boundary value problem involving the

partial differential equations is reduced to a system of nonlinear ordinary differ-

ential equations by using appropriate similarity transformations. The nonlinear

boundary values problem is solved numerically by using well known shooting tech-

nique scripted in the computational software Matlab. The impact of different

physical parameters on skin friction, Nusselt number is exhibited and analysed

graphically. The variations in the power-law index, the permeable velocity param-

eter and Weissenberg number are observed to influence the skin friction coefficient

and Nusselt number, very prominently.



Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic Definitions and Governing Laws 5

2.1 Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Mass Density . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Stress Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.4 Dynamic Viscosity . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.5 Kinematic Viscosity (ν) . . . . . . . . . . . . . . . . . . . . 8

2.3.6 Viscosity vs Friction . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Properties of Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Ideal Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Real Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.3 Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.4 Non-Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . 9

viii



ix

2.4.5 Tangent Hyperbolic Fluid [44] . . . . . . . . . . . . . . . . . 9

2.4.6 Compressible vs Incompressible . . . . . . . . . . . . . . . . 10

2.5 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Steady vs Unsteady . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Laminar vs Turbulent . . . . . . . . . . . . . . . . . . . . . 10

2.5.3 Boundary Layer Flow . . . . . . . . . . . . . . . . . . . . . 11

2.5.4 No-Slip Boundary Layer Flow . . . . . . . . . . . . . . . . . 11

2.5.5 Thermal Boundary Layer Flow . . . . . . . . . . . . . . . . 11

2.6 Type of Heat Transfer [45] . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.2 Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.4 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . 13

2.6.5 Thermal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Basic Governing Equations . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8.1 Conservation of Momentum . . . . . . . . . . . . . . . . . . 14

2.8.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . 14

2.8.3 Dimension and Units . . . . . . . . . . . . . . . . . . . . . . 15

2.8.4 Prandtl Number [46] . . . . . . . . . . . . . . . . . . . . . . 15

2.8.5 Skin Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.6 Nusselt Number . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Unsteady Squeezing Flow of a Non-Newtonian Tangent Hyper-
bolic Fluid over a permeable Surface 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Mathematical Problem . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Numerical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Skin Friction and Nusselt Number . . . . . . . . . . . . . . . 28

3.5.2 Effect of Weissenberg Number . . . . . . . . . . . . . . . . 29

3.5.3 Impact of Squeezed Flow Index . . . . . . . . . . . . . . . . 30

3.5.4 Effect of Magnetic Parameter . . . . . . . . . . . . . . . . . 31

3.5.5 Effect of Power Law Index . . . . . . . . . . . . . . . . . . . 32

3.5.6 Effect of Permeable Velocity . . . . . . . . . . . . . . . . . . 33

3.5.7 Effect of Prandtl Number and ε . . . . . . . . . . . . . . . . 34

4 Squeezing Flow of Tangent Hyperbolic Fluid over a Sensor Plate 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Numerical Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Numerical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42



x

4.5.1 Effect of Physical Parameters on Skin Friction and Nusselt
Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.2 Effect of Weissenberg Number . . . . . . . . . . . . . . . . 44

4.5.3 Effect of Squeezed Flow Index . . . . . . . . . . . . . . . . . 45

4.5.4 Effect of Magnetic Parameter . . . . . . . . . . . . . . . . . 46

4.5.5 Effect of Power Law Index . . . . . . . . . . . . . . . . . . . 47

4.5.6 Effect of Permeable Velocity . . . . . . . . . . . . . . . . . . 48

4.5.7 Effect of Prandtl Number and ε . . . . . . . . . . . . . . . . 49

4.5.8 Effect of Thermal Radiation . . . . . . . . . . . . . . . . . . 50

5 Conclusion 51

Bibliography 52



List of Figures

3.1 Model of squeezed flow over sensor plate . . . . . . . . . . . . . . . 18

3.2 Variation of Weissenberg number. . . . . . . . . . . . . . . . . . . . 29

3.3 Variation of Weissenberg number. . . . . . . . . . . . . . . . . . . . 29

3.4 Variation of squeezed flow index. . . . . . . . . . . . . . . . . . . . 30

3.5 Variation of squeezed flow index. . . . . . . . . . . . . . . . . . . . 30

3.6 Variation of magnetic number. . . . . . . . . . . . . . . . . . . . . . 31

3.7 Variation of magnetic number. . . . . . . . . . . . . . . . . . . . . . 31

3.8 Variation of power-law index. . . . . . . . . . . . . . . . . . . . . . 32

3.9 Variation of power-law index. . . . . . . . . . . . . . . . . . . . . . 32

3.10 Variation of permeable velocity. . . . . . . . . . . . . . . . . . . . . 33

3.11 Variation of permeable velocity. . . . . . . . . . . . . . . . . . . . . 33

3.12 Variation of Prandtl number. . . . . . . . . . . . . . . . . . . . . . 34

3.13 Variation of small parameter. . . . . . . . . . . . . . . . . . . . . . 34

4.1 Variation of Weissenberg number. . . . . . . . . . . . . . . . . . . . 44

4.2 Variation of Weissenberg number. . . . . . . . . . . . . . . . . . . . 44

4.3 Variation of squeezed flow index. . . . . . . . . . . . . . . . . . . . 45

4.4 Variation of squeezed flow index. . . . . . . . . . . . . . . . . . . . 45

4.5 Variation of magnetic number. . . . . . . . . . . . . . . . . . . . . . 46

4.6 Variation of magnetic number. . . . . . . . . . . . . . . . . . . . . . 46

4.7 Variation of power-law index. . . . . . . . . . . . . . . . . . . . . . 47

4.8 Variation of power-law index. . . . . . . . . . . . . . . . . . . . . . 47

4.9 Variation of permeable velocity. . . . . . . . . . . . . . . . . . . . . 48

4.10 Variation of permeable velocity. . . . . . . . . . . . . . . . . . . . . 48

4.11 Variation of Prandtl number. . . . . . . . . . . . . . . . . . . . . . 49

4.12 Variation of small parameter. . . . . . . . . . . . . . . . . . . . . . 49

4.13 Variation of thermal radiation. . . . . . . . . . . . . . . . . . . . . . 50

xi



List of Tables

3.1 The intervals for the choice of two missing conditions . . . . . . . . 27

3.2 Numerical results for skin friction, Nusselt number . . . . . . . . . . 28

4.1 Numerical results for skin friction, Nusselt number . . . . . . . . . . 43

xii



Abbreviations

BVPs Boundary value problems

IVPs Initial value problems

MHD Magnetohydrodynamics

ODEs Ordinary differential equations

PDEs Partial differential equations

RK Runge-Kutta

xiii



Symbols

s Arbitrary Constant

ρ Density

σ Electric Charge Density

µ Fluid Viscosity

T∞ Free Stream Temperature

u, v Velocity Components

ν kinematic Viscosity

U Free Stream Velocity

ψ Free Stream Function

q0(t) Heat Flux

M Magnetic Parameter

B0 Magnetic Filed

Nux Nusselt Number

n Power Law Index

P Pressure

f0 Permeable Velocity

Pr Prandtl Number

a Strength of Squeezed Flow Parameter

ε Small Quantity

Cf Skin Friction

Cp Specific Heat

b Squeezed Flow Index

τ Stress Tensor

xiv



xv

α Thermal Diffusivity

Γ Time Dependent Constant

T Temperature

t Time

Rd Thermal Radiation

K Thermal Conductivity

α(T ) Variable Thermal Conductivity

We Weissenberg Number



Chapter 1

Introduction

Squeezed flow is a special type of flow which occurs between two plates in such

a way that at least one of the two is moving towards the other. It plays an im-

portant role in fluid mechanics, engineering, biology and its many applications

can be found even at industrial level such as production of various types of foods,

injection molding and many uses in other technologies. Moore [1] analyzed the

squeezed phenomena for the viscous non-Newtonian fluid flow between two ap-

proaching plane surfaces. Wang [2] discussed the unsteady squeezing viscous fluid

flow between two circular plates. Wang [3] investigated the dynamics of a fluid

inside a tube squeezing at arbitrary rates with small squeeze number. Usha and

Sridharan [4] tested the arbitrary squeeze of viscous fluid flow passing through a

space between two elliptic plates. Further studies related to the the heat transfer

of a squeezing flow by many researchers can be seen in [5–8].

The scrutiny of heat and mass transfer in many industrial and sensible appli-

cations in peculiar areas like nuclear reactors, chemical reaction, solar energy in

space technology, polymer exclusion, energy production, production of pharma-

cology aim a drag and used others technologies. Mahmood et al. [9] analyzed the

heat and mass transposition in squeezing channel of viscous fluid flow towards a

permeable surface. Lin et al. [10] presented the characteristics of electromagnetic

squeezed fluid flow surrounding the annular curved sheet. Hamza [11] discussed

1
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the magnetic filed and centrifugal force effects on a squeezed fluid flow film inside

two parallel rotating disks. In case of low viscosity lubricants which reduce the

energy losses. Khaled and Vafai [12] marked the magnetohydrodynamics effect on

the squeezed fluid flow subjected to the heterogeneity transformation inside the

porous medium. Siddiqui et al. [13] investigated the viscous MHD effect on a fluid

flowing under the influence of an electromagnetic filed. Hayat et al. [14] discussed

magnetohydrodynamics unsteady non-Newtonian flow of a squeezed fluid over a

porous medium in a starching surface. Ahmed et al. [15] studied the free convec-

tion flow of unsteady MHD fluid along with the heat source and thermal diffusion

involving porous surface.

The applications of thermal radiation heat transfer can be found in engineer-

ing, manufacturing processes, chemical reactions, semiconductors and many oth-

ers technologies. Sohn and Chen [16] concluded that the microconvection thermal

effect in two phase mixtures is more effective than that for the single phase fluid

at a shear flow. Makinde [17] studied the free convection flow with the presence

of thermal radiation and mass transfer passing through a permeable vertical sur-

face. Hayat et al. [18] discussed the heat transfer in unsteady squeezing Jeffery

fluid flow. Hussain et al. [19] studied the thermal characteristics in bioconvection

squeezing flow between two parallel plates. Further work on the effects of thermal

radiation heat and mass transfer in fluid flow can be seen in [20–22].

Some important applications of non-Newtonian fluids can be seen in different areas

like thermoplastic processing, oil, food production, plasma and bioscience technol-

ogy. Datt and Elfring [23] pointed out that the motion of particles is different in

Newtonian and non-Newtonian fluids. The rheological effects of non-Newtonian

fluids are expected to be more complex than those for the Newtonian fluids. Ku-

mar et al. [24] investigated the essential branch of non-Newtonian fluid known

as the tangent hyperbolic fluids. Akbar et al. [25] analysed the analytical re-

sults of non-Newtonian tangent hyperbolic fluid flow with magnetic effect inside a

stretching plate. Hayat et al. [26] discussed the thermal radiation effects with free
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convective flow of heat and mass transfer in chemical burner of tangent hyperbolic

fluid towards a stagnation point. Malik et al. [27] studied the non-Newtonian

tangent hyperbolic fluid flow with magnetic effects inside a stretching tube.

The phenomenon of thermal conductivity of fluids can be improved by the ad-

dition of nanometer suspended particles in them. The resulting fluids are known

as nano-fluids and are used for the enhancement of the heat transfer. A rise in the

temperature of nanofluids can take place over a temperature range of 220 to 520.

Akbar and Khan [28] studied the thermal energy effect in nanofluid flow inside a

stretching permeable sheet. Saidulu et al. [29] investigated the zero normal flux of

nonoparticles on MHD boundary layer flow with the effects of inclined magnetic

number and viscous recreation of non-Newtonian nonofluid inside a stretching

plate. Ibrahim [30] investigated the thermal effect on second-grade slip condition

MHD flow of tangent hyperbolic fluid with zero normal flux of nanoparticles past

through the stretching surface. Khan et al. [31] investigated the magnetohydrody-

namics tangent hyperbolic nanofluid over a boundary layer flow past a stretching

sheet. The research work involving the sensor surface can be found in [32].

Sensor technology is widely used in our daily life. The sensor surface applications

can be found in the biological, chemical reaction processes, agriculture, weather

analysis, electronic, and much more technologies, for example, wireless, remote

sensor, a microphone sensor. Salahuddin et al. [33] analyzed the MHD squeezed

flow through a horizontal sensor surface with the presence of Carreau-Yasuda fluid.

Rout and Mishra [34] analyzed the thermal energy transport on MHD nanofluid

flow over a sensor surface towards a stretching sheet. Hayat et al. [35] investigated

the heat transfer in a second-grade fluid flow of squeezing channel towards a sensor

surface along with the thermal conductivity. More literature regarding the sensor

surface can be consulted in [36–40] applied to used the sensor surface model for

the heat and mass transformation mechanisms.
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1.1 Thesis Contributions

In this thesis, first the work of Kumar et al. [24] has been reviewed in detail. Dis-

cussed the present squeezing model is modified by including the effect of thermal

radiation of a squeezing flow of a tangent hyperbolic fluid towards a micro can-

tilever sensor plat. The non-dimensional partial differential equations are reduced

into the dimensionless system of ODEs by using the similarity transformation.

The numerical results is access by using well known shooting technique which is

working on the computational software Matlab.

1.2 Thesis Outlines

In addition to be present, this thesis is further distributed over four chapters.

Chapter 2 presents the basic laws, definitions and its properties. Moreover, the

solution methodology for the basic governing equations has also been discussed.

In Chapter 3 the work of Kumar et al. [24] has been reviewed the numerical

solution on unsteady squeezing flow with tangent hyperbolic fluid towards a sen-

sor surface.

Chapter 4 describes the extended work of Kumar et al. [24] by including the

thermal radiative particles effect in the governing model.

Chapter 5 compiles the major findings of the thesis.

All relevant references are shown in Bibliography.



Chapter 2

Basic Definitions and Governing

Laws

In this chapter, some basic laws and terminologies are presented which will be

used with subsequent chapters. The relevant definitions regarding fluid flow and

its properties have been taken from [41], [42], [43]. The material included in this

chapter will be helpful for understanding the rest of the thesis.

2.1 Fluid

“There is a physical law that a substance exists in three primary phases solid,

liquid, and gas. A substance in the liquid or gas phase is referred to as a fluid.

Distinction between a solid and a fluid is made on the basis of the substance’s

ability to resist an applied shear stress that tends to change its shape. A solid

can resist an applied shear stress by deforming, whereas a fluid deforms continu-

ously under the influence of shear stress, no matter how small. In solids stress, is

proportional to strain, but in fluids stress is proportional to strain rate.”

5
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2.2 Fluid Mechanics

“Fluid mechanics is that branch of science which deals with the behaviour of the

fluids (liquids or gases) at rest as well as in motion. Thus this branch of science

deals with the study of kinematic and dynamic aspects of fluids. The study of fluids

at rest is called statics. The study of fluids in motion, where pressure forces are not

considered, is called fluid kinematics and if the pressure forces are also considered

for the fluids in motion, that branch of science is called fluid dynamics.”

2.3 Fluid Dynamics

“Fluid dynamics is the branch of applied science that is concerned with the move-

ment of liquids and gases. Fluid dynamics is one of two branches of fluid mechanics,

which is the study of fluids and how forces affect them. (The other branch is fluid

statics, which deals with fluids at rest).”

2.3.1 Mass Density

“The density of a fluid, designated by the Greek symbol ρ (rho), is defined as

its mass per unit volume. Density is typically used to characterize the mass of

a fluid system. In the BG system, ρ has units of slugs/ft3 and in SI the units

are kg/m3. The value of density can vary widely between different fluids, but for

liquids, variations in pressure and temperature generally have only a small effect

on the value of ρ. Mathematically type as

ρ =
Mass of fluid

Volume of fluid
, (2.1)

The value of density of water is 1 gm/cm3.”
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2.3.2 Stress Field

“Surface forces on a fluid particle lead to stresses. The concept of stress is useful

for describing how forces acting on the boundaries of a medium (fluid or solid) are

transmitted throughout the medium.”

2.3.3 Surface Tension

“These various types of surface phenomena are due to the unbalanced cohesive

forces acting on the liquid molecules at the fluid surface. Molecules in the interior

of the fluid mass are surrounded by molecules that are attracted to each other

equally. However, molecules along the surface are subjected to a net force towards

the interior. The apparent physical consequence of this unbalanced force along

the surface is to create the hypothetical skin or membrane. A tensile force may be

considered to be acting in the plane of the surface along any line in the surface.

The intensity of the molecular attraction per unit length along any line in the

surface is called the surface tension and is designated by the Greek symbol σ.”

2.3.4 Dynamic Viscosity

“It is the resistance of the substance to flow. It depends upon the size and shape

of molecules. It is related with the concept of shear force. Mathematically, it is

denoted by µ. Examples are honey, oil.

µ =
shear stress

shear strain
. (2.2)

It is denoted by µ. Viscosity is the rate of shear strain or shear stress deformation.”
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2.3.5 Kinematic Viscosity (ν)

“Kinematic viscosity is the ratio of the dynamic viscosity µ to the mass density ρ.

The kinematic viscosity can be obtained by dividing the absolute viscosity of a fluid

with the fluid mass density. It is denoted by the Greek letter ν. Mathematically,

we can write”

ν =
µ

ρ
. (2.3)

2.3.6 Viscosity vs Friction

“Friction and viscosity refer to the forces that oppose the motion. The main dif-

ference between friction and viscosity is that friction is used to refer to forces that

resist relative motion, in general, whereas viscosity refers specifically to resistive

forces that occur between layers of a fluid when fluids attempt to flow. There-

fore, the term friction can also be referred to as the resistive force between solid

surfaces, or the resistive forces between solid and fluid surfaces.”

2.4 Properties of Fluids

2.4.1 Ideal Fluids

“Consider a hypothetical fluid having a zero viscosity µ=0. Such a fluid is called

an ideal fluid and the resulting motion is called as ideal or inviscid flow. In

an ideal flow, there is no existence of shear force because of vanishing viscosity.

Mathematically, it is denoted by”

τ = µ
du

dy
= 0 since µ = 0. (2.4)
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2.4.2 Real Fluid

“A fluid, which possesses viscosity, is known as a real fluid. All the fluids, in actual

practice, are real fluids.”

2.4.3 Newtonian Fluid

“A fluid in which the viscous stresses that arises from its flow are linearly propor-

tional to the strain, i.e., the rate of change of its deformation, as shear stress and

the rate of deformation are directly proportional to each other is called as New-

tonian fluids. In other words, the fluid which obeys the Newton’s law of viscosity

are called Newtonian fluids. Mathematically, denoted as

τyx = µ
du

dy
, (2.5)

where τ is the shear stress, u is the velocity, µ is the viscosity of fluid. Example

of Newtonian fluid are glycerol and silicone/thin motor oil.”

2.4.4 Non-Newtonian Fluid

“When shear stress is not directly proportional to the velocity gradient are defined

as non-Newtonian fluid. In other words, the fluid which does not obey the New-

ton’s law of viscosity is said to be non-Newtonian fluids. i.e. Toothpaste, ketchup,

Shampoo and Blood etc. Mathematically, it can be expressed.”

τyx = µ

(
du

dy

)n
n 6= 1 (2.6)

2.4.5 Tangent Hyperbolic Fluid [44]

“Tangent hyperbolic fluid model is a particular type of non-Newtonian fluid which

is used extensively for different laboratory experiments.”
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2.4.6 Compressible vs Incompressible

“A fluid is a substance that can flow easily. A fluid has no definite shape and it

takes the shape of the container which it is occupied. There are very weak attrac-

tion forces between molecules of the fluid. Gas and liquid phases are considered

as fluids mainly due to their ability to flow. Gases are called compressible fluid

whereas liquids are called incompressible fluid. The main difference between com-

pressible and incompressible fluid is that a force applied to a compressible fluid

changes the density of the a fluid whereas a force applied to an incompressible

fluid does not change the density to a considerable degree.”

2.5 Flow

“The movement of liquids and gases is generally referred to as flow, a concept

that describes how fluids behave and how they interact with their surrounding

environment i.e., water moving through a channel or pipe, or over a surface. Flow

can be either steady or unsteady.”

2.5.1 Steady vs Unsteady

“If all properties of a flow are independent of time, then the flow is steady, other-

wise, it is unsteady. That is, steady flows do not change over time. An example

of steady flow would be water flowing through a pipe at a constant rate. But if all

properties of a flow are dependent of time , then the flow is unsteady. An example

of unsteady flow would be water pouring from an old-fashioned hand pump are

examples of unsteady flow.”

2.5.2 Laminar vs Turbulent

“The flow of fluid, when each particle of the fluid follows a smooth path. The

laminar flow is that the velocity of the fluid is constant at any point. But The
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turbulent flow is define as the fluid particles is moving irregular flow characterized

by the tiny whirlpool region. The velocity of turbulent flow is not constant at

every point.”

2.5.3 Boundary Layer Flow

“The concept of boundary layer was first introduced by a German scientist, Lud-

wig Prandtl, in the year 1904. Although, the complete descriptions of motion of

a viscous fluid were known through Navier-Stokes equations, the mathematical

difficulties in solving these equations prohibited the theoretical analysis of viscous

flow. Prandtl suggested that the viscous flows can be analysed by dividing the

flow into two regions; one close to the solid boundaries and other covering the rest

of the flow. Boundary layer is the regions close to the solid boundary where the

effects of viscosity are experienced by the flow. In the regions outside the bound-

ary layer, the effect of viscosity is negligible and the fluid is treated as inviscid.

So, the boundary layer is a buffer region between the wall below and the inviscid

free-stream above.”

2.5.4 No-Slip Boundary Layer Flow

“In fluid dynamic the no-slip condition for viscous fluids assumes that at a solid

surface boundary, the velocity at this region will be zero if the viscous fluids

velocity is equal to the solid boundary.”

2.5.5 Thermal Boundary Layer Flow

“In fluid dynamic thermal boundary layer flow is defined as the heat transfer of

the boundary layer thickness of the fluid and wall of the solid surface at this region

is called thermal boundary layer flow.”
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2.6 Type of Heat Transfer [45]

2.6.1 Conduction

“Conduction transfers heat via direct molecular collision. An area of greater ki-

netic energy will transfer thermal energy to an area with lower kinetic energy.

Higher-speed particles will collide with slower speed particles. The slower-speed

particles will increase in kinetic energy as a result. Conduction is the most com-

mon form of heat transfer and occurs via physical contact. Examples would be to

place your hand against a window or place metal into an open flame.”

2.6.2 Convection

“When a fluid, such as air or a liquid, is heated and then travels away from the

source, it carries the thermal energy along. This type of heat transfer is called

convection. The fluid above a hot surface expands, becomes less dense, and rises.”

2.6.3 Radiation

“Thermal radiation generates from the emission of electromagnetic waves. These

waves carry the energy away from the emitting object. Radiation occurs through a

vacuum or any transparent medium (either solid or fluid). Thermal radiation is the

direct result of random movements of atoms and molecules in matter. Movement

of the charged protons and electrons results in the emission of electromagnetic

radiation.”
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2.6.4 Thermal Conductivity

“Thermal conductivity is a material property that describes ability to conduct

heat. Thermal conductivity can be defined as the quantity of heat transmitted

through a unit thickness of a material in a direction normal to a surface of unit area

due to a unit temperature gradient under steady state conditions. Mathematically,

written as

k =
QL

A∆T
(2.7)

where, k is thermal conductivity in [W/mK] in the SI system, Q is amount of heat

transfer through the material in J/S or W , A is the area of the body in m2, ∆ T

is difference in temperature in K.”

2.6.5 Thermal Diffusivity

“It can be defined thermal diffusivity is a material-specific property for charac-

terizing unsteady heat conduction. This value describes how quickly a material

reacts to a change in temperature. Mathematically,

α =
k

ρCp
, (2.8)

where k is the thermal conductivity of a material, ρ is the density and Cp is the

heat capacity. The unit of the thermal diffusivity are m2s−1 in the SI system and

dimensional form is [L2T−1] respectively.”

2.7 Basic Governing Equations

2.8 Conservation of Mass

“The conservation of mass relation for closed system. Obvious that the mass of

system remains constant during a process. For a control volume, mass balance is
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expressed in the rate form as

Conservation of mass min −mout =
dmcv

dt
(2.9)

where min and mout are the total rates of mass flow into and out of the control

volume, respectively, and dmcv/dt is the rate of change of mass within the control

volume boundaries. In fluid mechanics, the conservation of mass relation written

for a differential control volume is usually called the continuity.”

2.8.1 Conservation of Momentum

“The product of the mass and the velocity of a body is called the linear momentum

or just the momentum of the body, and the momentum of a rigid body of mass m

moving with a velocity V is mV . Newton’s second law states that the acceleration

of a body is proportional to the net force acting on it and is inversely proportional

to its mass, and the rate of change of the momentum of a body is equal to the net

force acting on the body.therefore the momentum of a system remains constant

when the net force acting on it is zero. and thus the momentum of such systems

is conserved. This is known as the conservation of momentum principle. In fluid

mechanics, Newton’s second law is usually referred to as the linear momentum

equation.”

2.8.2 Conservation of Energy

“Energy can be transferred to or from a closed system by heat or work, and the

conservation of energy principle requires that the net energy transfer to or from a

system during a process be equal to the change in the energy content of the system.

Control volumes involve energy transfer via mass flow also, and the conservation

of energy principle, also called the energy balance, is expressed as

Conservation of energy Ein − Eout =
dEcv
dt

, (2.10)
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where Ein and Eout are the total rates of energy transfer into and out of the

control volume, respectively, and dEcv/dt is the rate of change of energy within the

control volume boundaries. In fluid mechanics, we usually limit our consideration

to mechanical forms of energy only.”

2.8.3 Dimension and Units

“We refer to physical quantities such as length, time, mass, and temperature as

dimensions. In terms of a particular system of dimensions, all measurable quan-

tities are subdivided into two groupsprimary quantities and secondary quantities.

We refer to a small group of dimensions from which all others can be formed as

primary quantities, for which we set up arbitrary scales of measure. Secondary

quantities are those quantities whose dimensions are expressible in terms of the

dimensions of the primary quantities. For example, length is a dimension, but

centimetre is a unit.”

2.8.4 Prandtl Number [46]

“Prandtl number Pr, is a characteristic of the fluid only it is dimensionless pa-

rameter. It is the ratio of kinematic viscosity to its thermal diffusivity in a fluid.

Physically Prandtl number proved Mathematically, we can written as

Pr =
ν

α
, (2.11)

where ν is the Kinematic viscosity and α is the thermal diffusivity respectively.”

2.8.5 Skin Friction

“The systematic calculation yields the flow variables in the boundary layer includ-

ing the velocity gradient at the wall surface. The shear stress at the wall, hence the
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skin-friction drag on the surface, is obtained directly from those velocity gradients.

It is denoted by Cf and defined as.

Cf =
2τw
ρU2

w

, (2.12)

where τw is the shear stress at the wall, ρ the density, and Uw the free stream

velocity gradient.”

2.8.6 Nusselt Number

“Nusselt number may be viewed as the ratio of the conduction resistance of a

material to the convection resistance of the same material.”

Nux =
convection heat transfer strength

conduction heat transfer strength
=
hx

k
. (2.13)



Chapter 3

Unsteady Squeezing Flow of a

Non-Newtonian Tangent

Hyperbolic Fluid over a

permeable Surface

3.1 Introduction

In this chapter, two-dimensional incompressible squeezing flow of an unsteady tan-

gent hyperbolic fluid towards a sensor plate with uniform magnetic field has been

investigated. Further, the heat transfer analysis is carried out under the influ-

ence of variable thermal conductivity. The non-dimensional governing equations

are reduced into the dimensionless form of ODEs by using the following similarity

transformations. The boundary values problem is solved numerically by using well

known shooting technique which is working on the computational software Mat-

lab. Graphical results are produced for some important governing parameters.

The behaviour of fluid is also discussed through numerical results of skin-friction

and Nusselt number.

17
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3.2 Mathematical Problem

Figure 3.1: Model of squeezed flow over sensor plate

Consider two-dimensional incompressible boundary layer flow of an unsteady tan-

gent hyperbolic fluid between two parallel plates P1 and P2. Figure 3.1 has shown

that a channel with hight h(t) is squeezed. It is further assumed that h(t) is much

larger than the boundary layer thickness. A micro-cantilever sensor of length l is

assumed to be enclosed within the channel. The plate P1 is kept fixed whereas P2

is assumed to be pushed towards the lower plate P1. The governing equations are

modeled as:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

(
∂p

∂x

)
+ ν(1−n)

∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2
− σB

2
0

ρ
u, (3.2)

∂U

∂t
+ U

∂U

∂x
= −1

ρ

(
∂p

∂x

)
− σB2

0

ρ
U, (3.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α(T )

∂T

∂y

)
,

(3.4)
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From (3.3), substituting the pressure gradient in (3.2), we get the following equa-

tion:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x

+ ν(1− n)
∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2
+
σB2

0

ρ
(U − u).

(3.5)

The boundary conditions of the above model have been taken as:

y = 0 : u(x, y, t) = 0, v(x, y, t) = ν0(t), − k∂T (x, y, t)

∂y
= kq(x),

y →∞ : u(x, y, t)→ U(x, t), T (x, y, t)→ T∞.

 (3.6)

Here u is the horizontal velocity component and v is the vertical one. Moreover,

p represents the fluid pressure, U(x, t) the free stream velocity point, Γ the time

dependent materiel constant. α(θ) the variable thermal conductivity, ν the kine-

matic viscosity, n the power law index, ε a small quantity, σ the electric charge

density, ρ density of fluid and ν0(t) velocity of the sensor surface.

3.3 Transformation

The governing equations are transformed into the dimensionless system by using

the following applicable transformations: [24]

U = ax, ψ =
√
aνxf(η), a =

1

s+ bt
, α(θ) = α∞(1 + εθ) u = axf ′(η),

v = −
√
aνf(η), T = T∞ + θ(η)q0x

√
ν

a
, η = y

√
a

ν
= y

√
1

ν(s+ bt)
.

 (3.7)

In the above transformations, U the free stream velocity, a the strength of squeez-

ing flow, b the squeezing flow index, s an arbitrary constant, q0(x) the heat flux, T

presents temperature behaviour, T∞ the free stream temperature and ψ the stream

function. We, now, convert the dimensional system of the governing model (3.4)

and (3.5) with boundary values (3.6) into the dimensionless form by applying the

above applicable transformations.
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For the conversion of (3.5) into the dimensionless form, the following procedure

has been followed:

• ∂η

∂t
=

∂

∂t

( y√
ν

√
1

s+ bt

)
=

∂

∂t

y√
ν

(
s+ bt

)− 1
2

= − y√
ν

( b

2
√
s+ bt

.
1

s+ bt

)
= y

√
a

ν

(ab
2

)
= −ηab

2
. (3.8)

• ∂u

∂t
=

∂

∂t

(
axf ′(η)

)
= ax

(∂f ′(η)

∂η

∂η

∂t

)
− f ′(η)

xb

(s+ bt)2

=
(
− a2x

(
f ′′(η)

ηb

2

)
− f ′(η)(a2xb)

)
= −a2x

(ηb
2
f ′′(η) + bf ′(η)

)
. (3.9)

• u
∂u

∂x
= a2x

(
f ′(η)

)2
. (3.10)

• ∂u

∂y
= ax

√
a

ν
f ′′(η)

v
∂u

∂y
= −a2x

(
f(η)f ′′(η)

)
. (3.11)

• ∂U

∂t
=

∂

∂t

( x

s+ bt

)
=

−xb
(s+ bt)2

= −a2xb. (3.12)

• ∂U

∂x
= a. (3.13)

• U
∂U

∂x
= a2x. (3.14)

• ∂u

∂y
= ax

√
a

ν
f ′′(η),
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∂2u

∂y2
= ax

√
a

ν

∂

∂y

(
f ′′(η)

)
= ax

√
a

ν

(∂f ′′(η)

∂η

∂η

∂y

)
= ax

√
a

ν

√
a

ν

(
f ′′′(η)

)
=
a2x

ν

(
f ′′′(η)

)
,

ν(1− n)
∂2u

∂y2
= ν(1− n)

(
a2x

ν
f ′′′(η)

)
= a2x(1− n)f ′′′(η). (3.15)

•
√

2νnΓ
(∂u
∂y

)(∂2u

∂y2

)
=

(√
2νnΓ

a3x2

ν

√
a

ν

(
f ′′f ′′′(η)

))
=

(√
2aΓU√
ν

a2xn
(
f ′′f ′′′(η)

))
= a2xnWe(f

′′f ′′′(η)). (3.16)

• σB2
0

ρ
(U − u) =

axσB2
0

ρ

(
1− f ′(η)

)
. (3.17)

Using (3.9)-(3.17), the dimensionless form of (3.5) can be written as:

a2x

(
−
(
ηb

2
f ′′(η)+bf ′(η)

)
+ (f ′(η))2 −

(
ff ′′(η)

))
= a2x

(
− b+ 1 + (1− n)f ′′′(η) + nWe

(
f ′′f ′′′(η)

)
+
σB2

0

ρa

(
1− f ′(η)

))
.

⇒ −
(
ηb

2
f ′′(η) + bf ′(η)

)
+ (f ′(η))2 −

(
ff ′′(η)

)
= −b+ 1 + (1− n)f ′′′(η)

+ nWe

(
f ′′f ′′′(η)

)
+M

(
1− f ′(η)

)
.

⇒ (1− n)f ′′′(η) + nWe

(
f ′′f ′′′(η)

)
+M

(
1− f ′(η)

)
− b+ 1 +

ηb

2
f ′′(η)

+ bf ′(η)− (f ′(η))2 +
(
f ′′f ′′′(η)

)
= 0.

⇒ (1− n)f ′′′(η) +

(
f(η) +

ηb

2

)
f ′′(η)−

(
f ′(η)

)2
+ b(f ′(η)− 1)

+ nWe

(
f ′′f ′′′(η)

)
+M(1− f ′(η)) + 1 = 0.
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Further, (3.4) has been transformed into the dimensionless form as following pro-

cedure has been followed:

• ∂T

∂t
=

∂

∂t

(
T∞ + q0x

√
ν
(√

s+ btθ(η)
))

= q0x
√
ν

(
b

2
√
s+ bt

θ(η) +

(
∂θ

∂η

∂η

∂t

)√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηab

2

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηb

2(s+ bt)

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηb

2
√
s+ bt

√
s+ bt

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

√
aηb

2

)
= q0x

√
aν

(
b

2
θ(η)− ηb

2
θ′(η)

)
. (3.18)

• ∂T

∂x
= q0

√
ν

a

∂

∂x

(
x θ(η)

)
= q0

√
ν

a

(
x

(
∂θ

∂η

∂η

∂x

)
+ θ(η)

)
= q0

√
ν

a
θ(η).

• u
∂T

∂x
=
(
axf ′(η)

)(
q0

√
ν

a
θ(η)

)
= a q0x

√
ν

a

(
f ′θ(η)

)
= q0x

√
aν
(
f ′θ(η)

)
. (3.19)

• ∂T

∂y
= q0x

√
ν

a

∂

∂y

(
θ(η)

)
= q0x

√
ν

a

(
∂θ

∂η

∂η

∂y

)
(3.20)

= q0x

√
ν

a

√
a

ν
θ′(η)

= q0xθ
′(η).

• v
∂T

∂y
= −

(√
aνf(η)

)(
q0xθ

′(η)
)

= −q0x
√
aν(fθ′)(η).

(3.21)
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• ∂

∂y

(
α(t)

∂T

∂y

)
=

∂

∂y

(
α∞(1 + εθ

∂T

∂y

)
=

((
α∞ε

∂θ(η)

∂η

∂η

∂y

)
∂T

∂y
+ α∞(1 + εθ)

(
∂2T

∂y2

))
=

(
α∞εθ

′(η)

√
a

ν
q0xθ

′(η) + α∞(1 + εθ)q0x

√
a

ν
θ′′(η)

)
= q0x

√
a

ν

(
α∞ε(θ

′(η))2 + α∞(1 + εθ)θ′′(η)

)
. (3.22)

Using (3.18)-(3.22), (3.4) has been transformed into the dimensionless form as

follows:

q0x
√
aν

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
= q0x

√
a

ν

(
α∞ε (θ′(η))2 + α∞ (1 + εθ)θ′′(η)

)
.

⇒
√
aν

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

√
a

ν

(
α∞ε (θ′(η))2 + α∞ (1 + εθ)θ′′(η)

)
.

⇒
((

b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=
α∞
ν

(
ε (θ′(η))2 + (1 + εθ)θ′′(η)

)
.

⇒
((

b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

1

Pr

(
ε
(
θ′(η)

)2
+ (1 + εθ)θ′′(η)

)
.

⇒ Pr

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

(
ε (θ′(η))2 + (1 + εθ)θ′′(η)

)
.

⇒ (1 + εθ)θ′′(η) + Pr

(
f(η) +

bη

2

)
θ′(η) + ε

(
θ′(η)

)2

− Pr
(
f ′(η) +

b

2

)
θ(η) = 0.
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The dimensionless form of the (3.6) by using the transformations (3.7) as follows.

• u(x, y, t) = 0 at y = 0

⇒ axf ′(η) = 0 at η = 0

⇒ f ′(0) = 0.

• v(x, y, t) = ν0(t) at y = 0

⇒ −
√
aνf(η) = ν0(t) at η = 0

⇒ f(0) = −ν0(t)√
aν

= −ν
√
a√
aν

= −
√
ν = −f0.

• − k∂T (x, y, t)

∂y
= kq0x at y = 0

⇒ − kq0xθ
′(η) = kq0x at η = 0

⇒ θ′(0) = −1.

• u(x, y, t)→ U(x, t) = ax as y →∞

⇒ axf ′(η)→ ax as η →∞

⇒ f ′(η)→ 1. as η →∞

• T (x, y, t)→ T∞ as y →∞

⇒ T∞ + θ(η)q0x

√
ν

a
→ T∞ as η →∞

⇒ θ(η)→ 0 as η →∞

The final dimensionless form of the mathematical model describing the flow can,

now, be concluded as:

(1− n)f ′′′(η) +

(
f(η) +

ηb

2

)
f ′′(η)−

(
f ′(η)

)2
+ b(f ′(η)− 1)

+ nWe

(
f ′′f ′′′(η)

)
+M(1− f ′(η)) + 1 = 0,

(1 + εθ)θ′′(η) + Pr

(
f(η) +

bη

2

)
θ′(η) + ε

(
θ′(η)

)2

− Pr
(
f ′(η) +

b

2

)
θ(η) = 0,


(3.23)
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subject to the following boundary values:

f(0) = −f0, f ′(0) = 0, θ′(0) = −1, η = 0.

f ′(∞)→ 1, θ(∞)→ 0, η →∞.

 (3.24)

The Weissenberg number We, magnetic parameter M and Prandtl number Pr

are formulated as We =
√

2aΓU√
ν

, M =
σB2

0

ρa
, Pr = ν

α∞
.

3.4 Numerical Treatment

The coupled ODEs (3.23) with the boundary values (3.24) have been solved by

the well know shooting technique. The above ODEs can be re-written as:

f ′′′ =
1

1− n+ nWef ′′

(
(f ′)2 −

(
f +

ηb

2

)
f ′′ − b(f ′ − 1)−M(1− f ′)− 1

)
= 0,

(3.25)

θ′′ =
1

1 + εθ

(
Pr

(
f ′ +

b

2

)
θ − Pr

(
f +

bη

2

)
θ′ − ε(θ′)2

)
. (3.26)

By using following notations:

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5,

To implement the RK-4 method on the above scheme of first order ODEs, the

missing initial values w = w0 and z = z0 are to be chosen by hit and trial. For

the refinement of the missing initial values by the Newton’s method, the following

notations have been introduced.

∂y1

∂w
= y6,

∂y2

∂w
= y7,

∂y3

∂w
= y8,

∂y4

∂w
= y9,

∂y5

∂w
= y10,

∂y1

∂z
= y11,

∂y2

∂z
= y12,

∂y3

∂z
= y13,

∂y4

∂z
= y14,

∂y5

∂z
= y15.

Differentiating each of the first order ODEs of the above system, first w.r.t. w and

then w.r.t. z, we get the following IVP is obtained.
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y′1 = y2, y1(0) = −f0,

y′2 = y3, y2(0) = 0,

y′3 =
1

1− n+ nWey3

[
(y2)2 −

(
y1y3 +

ηb

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

]
, y3(0) = w,

y′4 = y5, y4(0) = z,

y′5 =
1

1 + εy4

[
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

ηb

2
y5

)
− ε(y5)2

]
, y5(0) = −1,

y′6 = y7, y6(0) = 0,

y′7 = y8, y7(0) = 0,

y′8 =
1

(1− n+ nWey3)2

[(
2(y2y7)−

(
y1y8 + y3y6 +

bη

2
y8

)
− by7 +My7

)(
1− n+ nWey3

)
− nWey8

(
(y2)2

−
(
y1y3 +

bη

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

)]
, y8(0) = 1,

y′9 = y10, y9(0) = 0,

y′10 =
1

(1 + εy4)2

[(
Pr

(
y2y9 + y4y7 +

b

2
y9

)
− Pr

(
y1y10 + y5y6

+
bη

2
y10

)
− 2εy5y10

)(
1 + εy4

)
− εy9

(
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

bη

2
y5

)
− εy2

5

)]
, y10(0) = 0,

y′11 = y12, y11(0) = 0,

y′12 = y13, y12(0) = 0,

y′13 =
1

(1− n+ nWey3)2

[(
2(y2y12)−

(
y1y13 + y3y11 +

bη

2
y13

)
− by12 +My12

)(
1− n+ nWey3

)
− nWey13

(
(y2)2

−
(
y1y3 +

bη

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

)]
, y13(0) = 0,

y′14 = y15, y14(0) = 1,

y′15 =
1

(1 + εy4)2

[(
Pr

(
y2y14 + y4y12 +

b

2
y14

)
− Pr

(
y1y15 + y5y11

+
bη

2
y15

)
− 2εy5y15

)(
1 + εy4

)
− εy14

(
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

bη

2
y5

)
− εy2

5

)]
. y15(0) = 0,
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It is important to mention that for an approximate solution, the unbounded do-

main [0, ∞) has to be replaced by a bounded domain [0, ηmax] in such a way that

the variation in the solution for η > ηmax is negligible. On the basis of observa-

tions, ηmax has been chosen as 5 for the present work. The missing conditions w

and z are iteratively updated by the Newton’s technique as follows.

wn+1

zn+1

 =

wn
zn

−
y8(wn, zn) y13(wn, zn)

y9(wn, zn) y14(wn, zn)

−1

η=ηmax

y2(wn, zn)− 1

y4(wn, zn)


η=ηmax

.

The stopping criteria for the iterative procedure has been ready as:

max {|y2(ηmax − 1)| , |y4(ηmax)|}< ζ,

where ζ is a sufficiently small +ve number. For the computations presented in

this thesis, ζ has been taken as 10−6. The choice of missing initial conditions is a

crucial part of the numerical procedure. In Table 3.1, the intervals [wi wf ] and

[zi zf ] have been presented where from the missing initial conditions w0 and z0

can respectively be chosen.

f0 ε Pr We b M n [wi wf ] [zi zf ]

-0.2 0.1 1 0.1 0.1 1 0.2 [1.56 01.9] [01.1, 1.74]
-0.3 [01.6 2.49] [01.1 2.29]
-0.4 [1.20 1.50] [1.09 2.79]
-0.1 0.0 [1.22 2.70] [0.89 1.13]

0.2 [1.57 2.59] [1.05 1.44]
0.3 [2.37 2.64] [01.1 1.15]
0.1 1.5 [1.49 2.26] [0.94 1.11]

2.0 [01.5 2.00] [0.90 1.18]
2.5 [1.56 1.90] [0.88 1.18]
1 0.5 [1.44 2.93] [0.92 1.18]

1 [01.1 3.37] [0.85 1.19]
1.5 [1.38 3.68] [0.81 1.19]
0.1 0.2 [1.46 2.39] [0.99 1.20]

0.4 [1.22 2.21] [0.96 1.20]
0.6 [1.11 2.04] [0.93 1.20]
0.1 0.1 [1.01 2.65] [0.95 1.20]

0.4 [1.19 2.58] [0.97 1.20]
0.8 [1.48 2.49] [0.99 1.20]
1 0.1 [1.39 2.44] [1.01 1.20]

0.4 [1.75 2.53] [1.01 1.20]
0.6 [2.00 2.61] [1.01 1.20]

Table 3.1: The intervals for the choice of two missing conditions

.
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3.5 Numerical Discussion

In the present section, effects of different physical parameters on the skin friction

coefficient and local Nusselt number profiles have been presented and analysed.

3.5.1 Skin Friction and Nusselt Number

Table 3.2 illustrates the numerical results of skin friction Cf and Nusselt number

Nux profiles under the impact of different physical quantities. It is investigated

that the effect of skin friction decreases by increasing the physical parameters

of squeezed flow index and n power-law index parameters. However, the skin

friction behaviour is increasing as an increasing values of the permeable velocity,

Pr express prandtl number, M magnetic parameter and We Weissenberg number

parameters. The Nusselt number has an increasing trend for, the squeezed param-

eter b, M magnetic parameter, n power-law index and f0 permeable velocity. The

Weissenberg number We tend to decline the Nusselt number.

f0 ε Pr We b M n Cf

√
Rex Nux

√
Rex

-0.2 0.1 1 0.5 0.1 0.1 0.2 1.242333 -1.080632
-0.3 1.305357 -1.009713
-0.4 1.370198 -0.945697
-0.1 0.0 1.181204 -1.081391

0.2 1.181204 -1.242778
0.3 1.181204 -1.331331
0.1 0.5 1.181204 -1.589973

1.5 1.181204 -0.944823
2 1.181204 -0.846303
1 1 1.209229 -1.168998

1.5 1.235042 -1.177645
2 1.259079 -1.185504

0.5 0.0 1.229456 -1.201291
0.2 1.130937 -1.121644
0.3 1.078362 -1.087658
0.1 0.2 1.218494 -1.153168

0.3 1.254744 -1.147382
0.4 1.290037 -1.141941
0.1 0.0 1.279091 -1.178891

0.4 1.079515 -1.138835
0.6 0.974302 -1.117447

Table 3.2: Numerical results for skin friction, Nusselt number
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3.5.2 Effect of Weissenberg Number

Figure 3.2 shows the behaviour of the velocity profile due to the increasing values of

Weissenberg number We, which is the ratio of the relaxation time to the processing

time. If the Weissenberg number increase, the fluid offers more resistance which

reduces the velocity. Figure 3.3 presents the temperature profile under the impact

of Weissenberg number. The temperature profile can be seen to be influenced in

the increasing sense.

Figure 3.2: Variation of Weissenberg number.

Figure 3.3: Variation of Weissenberg number.



Unsteady Squeezing Flow of a Non-Newtonian Tangent Hyperbolic Fluid... 30

3.5.3 Impact of Squeezed Flow Index

Figure 3.4 depict the behaviour of the velocity profile under the impact of the

squeezing flow index b. If the squeezing index is increased, the fluid’s velocity is

observed to decrease. When the squeezing flow index b is increased, the strength

of squeeze is decreased which declines the kinetic energy. As a result the velocity

bears a reduction. In case of temperature profile, the effect of the squeezing flow

index is shown in Figure 3.5 . It is observed that by increasing the values of the

squeezing flow index, the thermal boundary layer thickness is decreased.

Figure 3.4: Variation of squeezed flow index.

Figure 3.5: Variation of squeezed flow index.
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3.5.4 Effect of Magnetic Parameter

To show the effect of the magnetic parameter M on the velocity profile will be

analyse in the following discussion. In Figure 3.6, it is shown that if we increase the

magnetic number, the velocity profile also increases. When the magnetic number

gets larger values, the fluid is normally assumed to be slowed down. However,

Figure 3.6 reflects an opposite behaviour. It is due to the squeezing phenomenon

which has more stronger effect than the magnetic field. In case of temperature

profile, when we increases of the magnetic number, a decreasing trend can be

noticed in Figure 3.7.

Figure 3.6: Variation of magnetic number.

Figure 3.7: Variation of magnetic number.
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3.5.5 Effect of Power Law Index

To show the impact of the power-law index n on the velocity and temperature

profiles, Figures 3.8 and 3.9 have been included. A increasing the velocity of

fluid and decreasing the temperature behaviour can be observed due to the shear

thinning effect its viscosity decreases with shear strain.

Figure 3.8: Variation of power-law index.

Figure 3.9: Variation of power-law index.
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3.5.6 Effect of Permeable Velocity

Figures 3.10 and 3.11 shows the permeable velocity behaviour on the velocity and

temperature profiles. The velocity profile can be seen to increase if the permeable

velocity f0 bears an increment for the suction case. This behaviour happens due to

the fact that suction is responsible for pushing the fluid towards the sensor surface.

The permeable velocity leaves a similar effect on the temperature distribution as

presented in Figure 3.11.

Figure 3.10: Variation of permeable velocity.

Figure 3.11: Variation of permeable velocity.
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3.5.7 Effect of Prandtl Number and ε

Figure 3.12 indicates the impact of Prandtl number Pr on the temperature.

Prandtl number as defined by the ratio of momentum diffusivity to the thermal

diffusivity. The temperature behaviour decrease for the increasing values of the

prandtl number. Figure 3.13 shows an increasing behaviour of the temperature

profile for increasing values of ε. It happens because for higher values of ε, the

kinetic energy gets larger which causes the temperature to rise.

Figure 3.12: Variation of Prandtl number.

Figure 3.13: Variation of small parameter.



Chapter 4

Squeezing Flow of Tangent

Hyperbolic Fluid over a Sensor

Plate

4.1 Introduction

In this chapter, we have extended the work of Kumar et al. [24]. In the present

work, the squeezing flow model is modified by including the effect of variable

thermal radiation of a tangent hyperbolic fluid towards a sensor plate. Further,

the modified non-dimensional energy equation are reduced into the dimensionless

form by using the applicable transformations. The numerical results is access by

shooting technique scripted in the computational software Matlab. The numerical

results of skin friction, Nusselt number and profiles of physical interest are analysed

through tables and graphs for different physical parameters.

35
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4.2 Mathematical Model

Consider a flow with the same geometry as shown in Figure 3.1. In addition to

all the assumptions described in Chapter 3, the effect of thermal radiation has

been incorporated in the present model. As a result of inclusion of this physical

phenomena, only the energy equation will be updated. The modified version of

the partial differential equation (3.4) has been presented below.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+ U

∂U

∂x

+ ν(1− n)
∂2u

∂y2
+
√

2νnΓ

(
∂u

∂y

)
∂2u

∂y2
+
σB2

0

ρ
(U − u).

(4.1)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

∂

∂y

(
α(T )

∂T

∂y

)
− 1

ρCp

∂qr
∂y

.

(4.2)

The boundary values are given below:

y = 0, u(x, y, t) = 0, v(x, y, t) = ν0(t), − k∂T (x, y, t)

∂y
= kq(x),

y →∞, u(x, y, t)→ U(x, t), T (x, y, t)→ T∞.

 (4.3)

4.3 Transformation

The modified governing equation (4.2) are reduced into the dimensionless form by

using the following applicable transformations:

U = ax, ψ =
√
aνxf(η), a =

1

s+ bt
, u = axf ′(η), v = −

√
aνf(η),

T = T∞ + θ(η)q0x

√
ν

a
, η = y

√
a

ν
= y

√
1

ν(s+ bt)
.

 (4.4)

In the above transformations, U the free stream velocity, a the strength of squeez-

ing flow, b the squeezing flow index, s an arbitrary constant, q0(x) the heat flux, T

express temperature, T∞ present free stream temperature and ψ stream function.
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The radiation approximated by the Rosseland approach is

qr = −4σ∗

3k∗
∂T 4

∂y
. (4.5)

Here k∗ the absorption coefficient and σ∗ Stefan-Boltzmann constant. By applying

Taylor series for free stream temperature and ignoring the higher order terms.

• T 4 = 4T 3
∞T − 3T 4

∞ (4.6)

⇒ ∂T 4

∂y
= 4T 3

∞
∂T

∂y
(4.7)

Using (4.6) in (4.5), and further differentiate w.r.t. y, we get

∂qr
∂y

= −16σ∗T 3
∞

3k∗
∂2T

∂y2
. (4.8)

We, now, convert the dimensional energy equation (4.2) with boundary conditions

(4.3) into the dimensionless form by using the above similarity transformations.

• ∂T

∂t
=

∂

∂t

(
T∞ + q0x

√
ν
(√

s+ btθ(η)
))

= q0x
√
ν

(
b

2
√
s+ bt

θ(η) +

(
∂θ

∂η

∂η

∂t

)√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηab

2

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηb

2(s+ bt)

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

ηb

2
√
s+ bt

√
s+ bt

√
s+ bt

)
= q0x

√
ν

(√
ab

2
θ(η)− θ′(η)

√
aηb

2

)
= q0x

√
aν

(
b

2
θ(η)− ηb

2
θ′(η)

)
. (4.9)
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• ∂T

∂x
= q0

√
ν

a

∂

∂x

(
x θ(η)

)
= q0

√
ν

a

(
x

(
∂θ

∂η

∂η

∂x

)
+ θ(η)

)
= q0

√
ν

a
θ(η). (4.10)

• u
∂T

∂x
=
(
axf ′(η)

)(
q0

√
ν

a
θ(η)

)
= q0x a

√
ν

a

((
f ′θ(η)

))
= q0x

√
aν
(
f ′θ(η)

)
. (4.11)

• ∂T

∂y
= q0x

√
ν

a

∂

∂y

(
θ(η)

)
= q0x

√
ν

a

(
∂θ

∂η

∂η

∂y

)
= q0x

√
ν

a

√
a

ν
θ′(η)

= q0x θ
′(η). (4.12)

• v
∂T

∂y
= −

(√
aνf(η)

)(
q0xθ

′(η)
)

= −q0x
√
aν
(
fθ′(η)

)
. (4.13)

• ∂

∂y

(
α(t)

∂T

∂y

)
=

∂

∂y

(
α∞(1 + εθ

∂T

∂y

)
=

((
α∞ε

∂θ(η)

∂η

∂η

∂y

)
∂T

∂y
+ α∞(1 + εθ)

(
∂2T

∂y2

))
=

(
α∞εθ

′(η)

√
a

ν
q0xθ

′(η) + α∞(1 + εθ)q0x

√
a

ν
θ′′(η)

)
= q0x

√
a

ν

(
α∞ε(θ

′(η))2 + α∞(1 + εθ)θ′′(η)

)
. (4.14)

• ∂qr
∂y

= −16σ∗T 3
∞

3k∗

(
∂2T

∂y2

)
= −16σ∗T 3

∞
3k∗

q0x

√
a

ν
θ′′(η).
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1

ρCp

∂qr
∂y

= −16σ∗T 3
∞

3k∗ρCp
q0x

√
a

ν
θ′′(η)

= −
(

4σ∗T 3
∞

k∗k

)
4k

3ρCp
q0x

√
a

ν
θ′′(η)

= −4

3

(
k

ρCp

)
Rd q0x

√
a

ν
θ′′(η)

= −4

3
Rd α∞q0x

√
a

ν
θ′′(η). (4.15)

Using (4.9)-(4.15), the energy equation (4.2) has been transformation into the

dimensionless form as following procedure has been followed:

q0x
√
aν

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
= q0x

√
a

ν

(
α∞ε (θ′(η))2 + α∞ (1 + εθ)θ′′(η) +

4

3
Rd α∞θ

′′(η)

)
.

⇒
√
aν

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

√
a

ν

(
α∞ε (θ′(η))2 + α∞ (1 + εθ)θ′′(η) +

4

3
Rd θ′′(η)

)
.

⇒
((

b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=
α∞
ν

(
ε (θ′(η))2 + (1 + εθ)θ′′(η) +

4

3
Rd θ′′(η)

)
.

⇒
((

b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

1

Pr

(
ε
(
θ′(η)

)2
+ (1 + εθ)θ′′(η) +

4

3
Rd θ′′(η)

)
.

⇒ Pr

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

(
ε (θ′(η))2 + (1 + εθ)θ′′(η) +

4

3
Rd θ′′(η)

)
.

⇒ Pr

((
b

2
θ(η)− ηb

2
θ′(η)

)
+
(
f ′θ(η)

)
−
(
fθ′(η)

))
=

(
ε (θ′(η))2 + (1 + εθ)θ′′(η) +

4

3
Rd θ′′(η)

)
.

⇒ (1 + εθ)θ′′(η) + Pr

(
f(η) +

bη

2

)
θ′(η) + ε

(
θ′(η)

)2

− Pr
(
f ′(η) +

b

2

)
θ(η) +

4

3
Rd θ′′(η) = 0.
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The final dimensionless form of the mathematical model describing the flow can,

now, be concluded as:

(1− n)f ′′′(η) +

(
f(η) +

ηb

2

)
f ′′(η)−

(
f ′(η)

)2
+ b(f ′(η)− 1)

+ nWe

(
f ′′f ′′′(η)

)
+M(1− f ′(η)) + 1 = 0.

(1 + εθ)θ′′(η) + Pr

(
f(η) +

bη

2

)
θ′(η) + ε

(
θ′(η)

)2

− Pr
(
f ′(η) +

b

2

)
+

4

3
Rd θ′′(η) = 0.


(4.16)

Subject to the following boundary values:

f(0) = −f0, f
′(0) = 0, θ′(0) = −1, η = 0.

f ′(∞)→ 1, θ(∞)→ 0, η →∞.

 (4.17)

The Weissenberg number We, magnetic field parameter M , Prandtl number Pr

and Rd the thermal diffusivity are formulated as

We =
√

2aΓU√
ν

, M =
σB2

0

ρa
, Pr = ν

α∞
, Rd = 4σ∗T 3

∞
k∗k

.

4.4 Numerical Treatment

The coupled non-linear ODEs (4.16) with the boundary values (4.17) have been

computed by the shooting technique. The above ODEs can be re-written as:

f ′′′ =
1

1− n+ nWef ′′

(
(f ′)2 −

(
f +

ηb

2

)
f ′′ − b(f ′ − 1)−M(1− f ′)− 1

)
= 0,

(4.18)

θ′′ =
1

1 + εθ + 4
3
Rd

(
Pr

(
f ′ +

b

2

)
θ − Pr

(
f +

bη

2

)
θ′ − ε(θ′)2

)
. (4.19)

By using following notations:

f = y1, f ′ = y2, f ′′ = y3, θ = y4, θ′ = y5,
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To implement the RK-4 method on the above scheme of first order ODEs, the

missing initial values w = w0 and z = z0 are to be chosen by hit and trial. For

the refinement of the missing initial values by the Newton’s method, the following

notations have been introduced.

∂y1

∂w
= y6,

∂y2

∂w
= y7,

∂y3

∂w
= y8,

∂y4

∂w
= y9,

∂y5

∂w
= y10,

∂y1

∂z
= y11,

∂y2

∂z
= y12,

∂y3

∂z
= y13,

∂y4

∂z
= y14,

∂y5

∂z
= y15.

Differentiating each of the first order ODEs of the above system, first w.r.t. w and

then w.r.t. z, we get the following IVP is obtained.

y′1 = y2, y1(0) = −f0,

y′2 = y3, y2(0) = 0,

y′3 =
1

1− n+ nWey3

[
(y2)2 −

(
y1y3 +

ηb

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

]
, y3(0) = w,

y′4 = y5, y4(0) = z,

y′5 =
1

1 + εy4 + 4
3
Rd

[
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

ηb

2
y5

)
− ε(y5)2

]
, y5(0) = −1,

y′6 = y7, y6(0) = 0,

y′7 = y8, y7(0) = 0,

y′8 =
1

(1− n+ nWey3)2

[(
2(y2y7)−

(
y1y8 + y3y6 +

bη

2
y8

)
− by7 +My7

)(
1− n+ nWey3

)
− nWey8

(
(y2)2

−
(
y1y3 +

bη

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

)]
, y8(0) = 1,
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y′9 = y10, y9(0) = 0,

y′10 =
1

(1 + εy4 + 4
3
Rd)2

[(
Pr

(
y2y9 + y4y7 +

b

2
y9

)
− Pr

(
y1y10 + y5y6 +

bη

2
y10

)
− 2εy5y10

)(
1 + εy4

)
− εy9

(
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

bη

2
y5

)
− εy2

5

)]
, y10(0) = 0,

y′11 = y12, y11(0) = 0,

y′12 = y13, y12(0) = 0,

y′13 =
1

(1− n+ nWey3)2

[(
2(y2y12)−

(
y1y13 + y3y11 +

bη

2
y13

)
− by12 +My12

)(
1− n+ nWey3

)
− nWey13

(
(y2)2

−
(
y1y3 +

bη

2
y3

)
− b(y2 − 1)−M(1− y2)− 1

)]
, y13(0) = 0,

y′14 = y15, y14(0) = 1,

y′15 =
1

(1 + εy4 + 4
3
Rd)2

[(
Pr

(
y2y14 + y4y12 +

b

2
y14

)
− Pr

(
y1y15 + y5y11 +

bη

2
y15

)
− 2εy5y15

)(
1 + εy4

)
− εy14

(
Pr

(
y2y4 +

b

2
y4

)
− Pr

(
y1y5 +

bη

2
y5

)
− εy2

5

)]
. y15(0) = 0,

As already done in Chapter 3, the unbounded domain [0, ∞) has to be replaced

by a bounded domain [0, ηmax] in such a way that the variation in the solution

for η > ηmax is negligible. On the basis of observations, ηmax has been chosen as

5 for the present work.

wn+1

zn+1

 =

wn
zn

−
y8(wn, zn) y13(wn, zn)

y9(wn, zn) y14(wn, zn)

−1

η=ηmax

y2(wn, zn)− 1

y4(wn, zn)


η=ηmax

.

4.5 Numerical Discussion

In the present section, effects of different physical parameters on the Nusselt num-

ber profile have been presented and analysed.
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4.5.1 Effect of Physical Parameters on Skin Friction and

Nusselt Number

Table 4.1 illustrates the numerical results of the skin friction and Nusselt number

under the impact of physical parameters. In order to shows that the effect of skin

friction decreases by increasing physical parameters of b the squeezed flow index.

However, the skin friction behaviour is increasing as an increasing values of the

f0 the permeable velocity, Pr the prandtl number, M the magnetic number and

We Weissenberg number parameters. The Nusselt number has an increasing trend

for, the squeezed parameter b, M the magnetic number and f0 permeable velocity.

The thermal radiation Rd tend to decline the Nusselt number.

f0 ε Pr We b M n Rd Cf

√
Rex Nux

√
Rex

-0.2 0.1 1 0.5 0.1 0.1 0.2 1 1.242333 -3.599693
-0.3 1.305357 -3.445555
-0.4 1.370198 -3.301917
-0.1 0 1.181204 -3.660959

0.2 1.181204 -3.927913
0.3 1.181204 -4.097202
0.1 0.5 1.181204 -5.107889

1.5 1.181204 -3.152474
2 1.181204 -2.780503
1 1 1.209229 -3.791577

1.5 1.235042 -3.815225
2 1.259079 -3.836825

0.5 0.0 1.229456 -3.880253
0.2 1.130937 -3.661245
0.3 1.078362 -3.566869
0.1 0.2 1.218494 -3.748343

0.3 1.254743 -3.732436
0.4 1.290037 -3.717483
0.1 0.0 1.279091 -3.822808

0.4 1.079515 -3.704998
0.6 0.974302 -3.642040
0.2 0.5 1.181204 -2.355078

1.5 1.181204 -5.351504
2 1.181204 -7.087824

Table 4.1: Numerical results for skin friction, Nusselt number



Squeezing Flow of Tangent Hyperbolic Fluid over a Sensor Plate 44

4.5.2 Effect of Weissenberg Number

Figure 4.1 shows the behaviour of the velocity profile due to the increasing values

of Weissenberg number We, which is the ratio of the relaxation time to the pro-

cessing time. If the Weissenberg number increase, the fluid offers more resistance

which reduces the velocity. Figure 4.2 illustrates the temperature profile under

the impact of Weissenberg number. The temperature profile can be seen to be

influenced in the increasing sense.

Figure 4.1: Variation of Weissenberg number.

Figure 4.2: Variation of Weissenberg number.
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4.5.3 Effect of Squeezed Flow Index

Figure 4.3 shows the behaviour of the velocity profile under the impact of the

squeezing flow index b. If the squeezing flow index is increased, the fluid’s velocity

is observed to decrease. When the squeezing flow index b is increased, the strength

of squeeze is decreased which declines the kinetic energy. As a result the velocity

bears a reduction. In case of temperature profile, the effect of the squeezing flow

index is shown in Figure 4.4 . It is observed that by increasing the squeezing flow

index, the thermal boundary layer thickness of fluid is decreased.

Figure 4.3: Variation of squeezed flow index.

Figure 4.4: Variation of squeezed flow index.
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4.5.4 Effect of Magnetic Parameter

Effect of the magnetic parameter M on the velocity profile will be analysed in the

following discussion. In Figure 4.5, it is shown that if we increase the magnetic

number, the velocity profile also increases. When the magnetic number gets larger

values, the fluid is normally assumed to be slowed down. However, Figure 4.5

reflects an opposite behaviour. It is due to the squeezing phenomenon which has

more stronger effect than the magnetic field. In case of temperature profile, when

we increase the magnetic number, a decreasing trend can be noticed in Figure 4.6.

Figure 4.5: Variation of magnetic number.

Figure 4.6: Variation of magnetic number.
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4.5.5 Effect of Power Law Index

To show the impact of the power-law index n on the velocity and temperature pro-

files, Figures 4.7 and 4.8 have been included. A increasing the velocity behaviour

and decreasing the temperature profile can be observed due to the effect of shear

thinning its viscosity decreases with shear strain.

Figure 4.7: Variation of power-law index.

Figure 4.8: Variation of power-law index.



Squeezing Flow of Tangent Hyperbolic Fluid over a Sensor Plate 48

4.5.6 Effect of Permeable Velocity

Figures 4.9 and 4.10 show the effects of the permeable velocity f0 on the velocity

and temperature profiles. The velocity profile can be seen to reduce if the perme-

able velocity f0 bears an increment for the suction case. This behaviour happens

due to the fact that suction is responsible for pushing the fluid towards the sen-

sor surface. The permeable velocity leaves a similar effect on the temperature

distribution as presented in Figure 4.10.

Figure 4.9: Variation of permeable velocity.

Figure 4.10: Variation of permeable velocity.
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4.5.7 Effect of Prandtl Number and ε

Figure 4.11 shows the Prandtl number Pr effect on the temperature. Prandtl

number as defined by the ratio of momentum diffusivity to the thermal diffusivity.

The temperature profile is marked to decline for the increasing values of the prandtl

number. Figure 4.12 shows an increasing behaviour of the temperature for rising

function of ε. It happens because for higher values of ε, the kinetic energy gets

larger which causes the temperature to rise.

Figure 4.11: Variation of Prandtl number.

Figure 4.12: Variation of small parameter.
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4.5.8 Effect of Thermal Radiation

Figure 4.13 shows the behaviour of thermal radiation on the temperature profile.

The temperature profile can be observed to rise as an leading values of the thermal

radiation. The thickness of boundary layer is also increased.

Figure 4.13: Variation of thermal radiation.



Chapter 5

Conclusion

In this very brief chapter, the thesis has been concluded with main focus on the

crucial findings. The key findings have been listed below.

The thermal radiation is observed to decrease the Nusselt number, significantly,

in all the cases. Keeping all the other parameters fixed, the radiation parameter

is observed to decrease the Nusselt number. By keeping the radiation parameter

fixed, the Nusselt number Nux is observed to decline by increasing the values of ε

and the Weissenberg number We. By keeping the radiation parameter fixed, the

Nusselt number is observed to rise by increasing the values of permeable velocity

f0, Prandtl number, squeezed flow index, magnetic number and power-law index.

The thermal radiation parameter does not seem to affect the skin-friction coeffi-

cient in general. The thermal radiation parameter is found to cause a rise in the

temperature.

51
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